Participation of the Cl-/HCO(3)- exchangers SLC26A3 and SLC26A6, the Cl- channel CFTR, and the regulatory factor SLC9A3R1 in mouse sperm capacitation.

نویسندگان

  • Julio C Chávez
  • Enrique O Hernández-González
  • Eva Wertheimer
  • Pablo E Visconti
  • Alberto Darszon
  • Claudia L Treviño
چکیده

Sperm capacitation is required for fertilization and involves several ion permeability changes. Although Cl(-) and HCO(3)(-) are essential for capacitation, the molecular entities responsible for their transport are not fully known. During mouse sperm capacitation, the intracellular concentration of Cl(-) ([Cl(-)](i)) increases and membrane potential (Em) hyperpolarizes. As in noncapacitated sperm, the Cl(-) equilibrium potential appears to be close to the cell resting Em, opening of Cl(-) channels could not support the [Cl(-)](i) increase observed during capacitation. Alternatively, the [Cl(-)](i) increase might be mediated by anion exchangers. Among them, SLC26A3 and SLC26A6 are good candidates, since, in several cell types, they increase [Cl(-)](i) and interact with cystic fibrosis transmembrane conductance regulator (CFTR), a Cl(-) channel present in mouse and human sperm. This interaction is known to be mediated and probably regulated by the Na(+)/H(+) regulatory factor-1 (official symbol, SLC9A3R1). Our RT-PCR, immunocytochemistry, Western blot, and immunoprecipitation data indicate that SLC26A3, SLC26A6, and SLC9A3R1 are expressed in mouse sperm, localize to the midpiece, and interact between each other and with CFTR. Moreover, we present evidence indicating that CFTR and SLC26A3 are involved in the [Cl(-)](i) increase induced by db-cAMP in noncapacitated sperm. Furthermore, we found that inhibitors of SLC26A3 (Tenidap and 5099) interfere with the Em changes that accompany capacitation. Together, these findings indicate that a CFTR/SLC26A3 functional interaction is important for mouse sperm capacitation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The testis anion transporter TAT1 (SLC26A8) physically and functionally interacts with the cystic fibrosis transmembrane conductance regulator channel: a potential role during sperm capacitation.

The Slc26 gene family encodes several conserved anion transporters implicated in human genetic disorders, including Pendred syndrome, diastrophic dysplasia and congenital chloride diarrhea. We previously characterized the TAT1 (testis anion transporter 1; SLC26A8) protein specifically expressed in male germ cells and mature sperm and showed that in the mouse, deletion of Tat1 caused male steril...

متن کامل

Molecular characterization of Slc26a3 and Slc26a6 anion transporters in guinea pig pancreatic duct.

HCO3 in pancreatic juice arises from the pancreatic duct cells. Secretin stimulates HCO3 secretion via a mechanism that involves activation of the adenylate cyclase pathway, activation of both basolateral K channels and the apical CFTR Cl channel, and stimulation of an apical Slc26mediated Cl/HCO3 exchanger (1). The Slc26 anion exchangers, Slc26a3 and Slc26a6, have both been localized to the ap...

متن کامل

SLC26 anion exchangers of guinea pig pancreatic duct: molecular cloning and functional characterization.

The secretin-stimulated human pancreatic duct secretes HCO(3)(-)-rich fluid essential for normal digestion. Optimal stimulation of pancreatic HCO(3)(-) secretion likely requires coupled activities of the cystic fibrosis transmembrane regulator (CFTR) anion channel and apical SLC26 Cl(-)/HCO(3)(-) exchangers. However, whereas stimulated human and guinea pig pancreatic ducts secrete ∼140 mM HCO(3...

متن کامل

Slc26a9 is inhibited by the R-region of the cystic fibrosis transmembrane conductance regulator via the STAS domain.

SLC26 proteins function as anion exchangers, channels, and sensors. Previous cellular studies have shown that Slc26a3 and Slc26a6 interact with the R-region of the cystic fibrosis transmembrane conductance regulator (CFTR), (R)CFTR, via the Slc26-STAS (sulfate transporter anti-sigma) domain, resulting in mutual transport activation. We recently showed that Slc26a9 has both nCl(-)-HCO(3)(-) exch...

متن کامل

Chloride conductance of CFTR facilitates basal Cl-/HCO3- exchange in the villous epithelium of intact murine duodenum.

Villi of the proximal duodenum are situated for direct exposure to gastric acid chyme. However, little is known about active bicarbonate secretion across villi that maintains the protective alkaline mucus barrier, a process that may be compromised in cystic fibrosis (CF), i.e., in the absence of a functional CF transmembrane conductance regulator (CFTR) anion channel. We investigated Cl(-)/HCO(...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biology of reproduction

دوره 86 1  شماره 

صفحات  -

تاریخ انتشار 2012